
 

	
Anastas	Stoyanovsky,	1710	Murray	Ave.,	Ste.	300,	Pittsburgh,	PA	15217;	astoyan@us.ibm.com	
Steven	Pritko,	1710	Murray	Ave.,	Ste.	300,	Pittsburgh,	PA	15217;	steven_pritko@us.ibm.com	
Copyright	2018	is	held	by	the	author(s). 

Scaling	agile	development	across	loosely	coupled	teams	using	
microservice	architecture	
ANASTAS	STOYANOVSKY,	IBM	Watson	
STEVEN	PRITKO,	IBM	Watson	

We	observe	that	teams	from	different	organizations	with	different	incentive	structures	tend	to	focus	on	different	system	quality	attributes	
and	that	this	difference	can	impede	collaboration.	In	this	experience	report,	we	present	a	case	study	of	a	microservice	architecture-based	
approach	 to	 this	problem	that	we	adopted	during	a	collaboration	between	 IBM	Watson	and	 IBM	Research.	We	propose	 that	 the	overall	
framework	described	is	generally	applicable	to	scaling	agile	development	across	teams	with	different	incentive	structures.		

1. INTRODUCTION	

The	 quality	 attributes	 (QAs)	 of	 a	 system,	 such	 as	 performance,	 accuracy,	 fault	 tolerance,	 reliability,	 and	
maintainability,	are	various	 factors	which	affect	 its	behavior,	usability,	and	design	across	all	 its	 components.	
QAs	 can	have	 tradeoffs	with	 one	 another	 and	 thus	 their	 relative	 importance	 to	 a	 particular	 system	must	 be	
weighed	and	balanced.	If	a	particular	QA	affects	a	software	system's	architecture,	 it	can	be	an	architecturally	
significant	requirement	(ASR)	[1].	

A	common	 trope	 is	 that	of	 "research	code"	and	refers	 to	 code	written	 for	 research	applications,	with	 the	
subtext	that	such	code	can	be	difficult	to	maintain	or	extend,	lack	reusable	abstractions,	and	have	inexhaustive	
error	handling.	While	it	is	true	that	code	written	in	the	course	of	a	research	project	is	often	not	suitable	to	be	
shipped	 in	 a	 product,	 another	 perspective	 on	 the	 phrase	 is	 that	 research	 code	 is	 intentionally	written	with	
emphasis	on	certain	QAs,	such	as	accuracy,	over	others	that	are	more	 important	 to	production	code,	such	as	
maintainability.	

The	QAs	that	a	development	team	focuses	on	often	align	with	the	incentives	of	the	organization	that	team	
belongs	to.	In	a	research	organization	whose	incentives	are	built	around	academic	publication	and	furthering	
the	scientific	state	of	the	art,	an	inclination	towards	focusing	on	accuracy	at	the	expense	of	maintainability	can	
graduate	 to	 a	 norm,	 while	 within	 a	 software	 engineering	 organization	 performance,	 usability,	 and	 fault	
tolerance	will	tend	to	be	first	concerns.	When	two	teams	from	different	organizations	with	different	incentive	
structures	and	reporting	chains	are	 tasked	 to	begin	collaboration	on	a	product,	 this	difference	 in	habits	and	
norms	can	impede	the	development	process	or	lead	to	tension.	

In	this	experience	report,	we	recount	an	approach	we	took	towards	preventing	this	tension	by	hoisting	[3]	
certain	 QAs	 into	 a	 microservice	 based	 architecture	 so	 as	 to	 lead	 two	 teams	 to	 efficiently	 work	 towards	 a	
common	goal	while	simultaneously	following	their	respective	organizations'	incentives.	In	contrast	with	agile	
frameworks	such	as	Disciplined	Agile	Delivery	[5],	ours	is	architecture-first	perspective	that	tries	to	use	system	
design	to	scale	agile	processes	across	teams.	

2. BACKGROUND	

IBM	Watson	 and	 IBM	 Research	 are	 separate	 organizational	 units,	 the	 former	 being	 a	 software	 engineering	
organization	first	and	the	latter	being	a	research	organization	first.	They	routinely	collaborate	and	often	a	new	
product	 or	 feature	 is	 started	 with	 a	 collaboration	 between	 teams	 from	 each	 organization	 that	 have	 never	
worked	 together	 before.	 The	 difference	 in	 habits	 and	 incentives	 between	 these	 organizations	 needs	 to	 be	
resolved	every	time	a	new	collaboration	is	formed,	which	especially	comes	to	fore	when	considering	what	to	
do	with	a	research	prototype.	

A	 research	 prototype	 is	 generally	 not	written	with	maintainability	 as	 a	 focus,	 nor	 often	 extensibility	 or	
modularity.	What	portion,	 if	any,	of	 the	existing	code	can	be	reused,	where	new	code	should	be	written,	and	
how	the	ensuing	development	process	will	be	conducted	needs	to	be	solved	every	time	this	situation	occurs.	



Scaling	agile	development	across	loosely	coupled	teams	using	microservice	architecture:	Page	-	2	
 

The	 problem	 compounds	 if	 product	 development	 must	 start	 while	 the	 scientific	 work	 is	 still	 being	
developed:	should	there	be	code	handoff,	a	common	codebase,	a	prototype/reimplement	cycle,	or	some	other	
method	 of	 collaboration?	 How	 does	 one	 engineer	 a	 product	 and	 deliver	 it	 on	 time	 when	 the	 algorithm	
development	 has	 not	 finished,	 or	 is	 not	 past	 the	 conceptual	 stage?	 And,	 as	 we	 focus	 on	 here,	 can	 the	
collaborative	 development	 process	 be	 designed	 to	 take	 advantage	 of,	 rather	 than	 try	 to	 work	 against,	
differences	between	team	incentives	and	norms?	

3. CASE	REPORT	

In	June	2017,	an	engineering	team	from	IBM	Watson,	distributed	between	Pittsburgh,	PA	and	Denver,	CO,	and	a	
research	 team	 from	 IBM	Research,	 based	 in	New	York	 City,	NY	 began	partnering	 on	 the	 development	 of	 an	
artificial	 intelligence	 application	built	 on	 top	of	 an	 existing,	 productized	platform	 to	provide	 state	 of	 the	 art	
functionality	to	solve	a	novel	artificial	intelligence	task.	Though	the	natures	of	the	inputs	to	and	outputs	of	the	
desired	solution	were	defined,	the	nature	of	the	solution	itself	was	not	known.		

The	core	development	process	problem	was	to	find	an	efficient	way	for	the	engineering	team	to	iterate	on	
the	system	design	while	allowing	the	research	team	to	iterate	on	the	science	in	order	to	achieve	a	production	
quality,	state	of	the	art	system	within	an	aggressive	deadline.	Technical	problems	to	be	solved	included	a	data	
processing	pipeline,	real-time	propagation	of	and	reaction	to	state	changes	such	as	new	or	modified	data,	task	
scheduling	and	status	monitoring	of	training	jobs	on	a	high-performance	computing	cluster,	and	trained	model	
management.	

3.1 Strategy	
Our	approach	was	to	not	only	identify	specific	QAs	as	ASRs	but	to	go	farther	by	hoisting	them	into	the	system	
design	 in	such	a	way	as	 to	allow	each	team	to	 focus	on	the	same	QAs	 it	normatively	does,	without	having	to	
trade	 off	 between	 them.	 We	 used	 a	 microservice	 architecture	 to	 facilitate	 system	 design	 built	 around	 this	
principle.	 An	 essential	 auxiliary	 activity	 was	 the	 recording	 of	 relevant	 system	 design	 decisions	 using	
architectural	decision	records	(ADRs)	[6]	to	serve	as	a	record	of	the	design	process.		

3.2 System	Design	
Given	 that	 the	 types	of	 inputs	and	outputs	of	 the	desired	product	were	known,	we	chose	an	ensembling	 [4]	
approach	 in	 which	 any	 number	 of	 different	 microservices	 can	 implement	 an	 algorithmic	 solution	 for	 the	
desired	task,	so	long	as	they	implement	a	common	interface	(Fig.	1).	User	input	is	asynchronously	fanned	out	
to	 all	Algorithm	 backends	 for	 their	 returns	 to	 be	 disambiguated	 and	 de-duplicated	 before	 being	 stored	 and	
made	available	for	user	retrieval.	The	common	interface	each	Algorithm	microservice	implements	evolved	over	
time,	but	changes	were	infrequent	and	made	only	as	necessary	because	any	changes	had	implications	both	for	
the	Ensembler	service	and	for	each	Algorithm	backend.			

	

	
Figure	1.	System	Architecture	



Scaling	agile	development	across	loosely	coupled	teams	using	microservice	architecture:	Page	-	3	
 

	
As	 the	 project	 developed	 and	 the	 various	 concerns	 of	 the	 overall	 application	 became	 better	 defined,	we	

abstracted	away	each	of	those	concerns	common	to	all	Algorithm	backends	behind	APIs,	leaving	each	backend	
itself	stateless	and	only	reading	from	or	updating	shared	state	as	necessary.	References	to	new	or	updated	data	
arriving	 from	the	user	via	 Ingestion	are	placed	on	a	message	queue	 for	 the	Document	Processor	 to	pull	 from.	
Once	Document	Preprocessor	completes	and	saves	the	output	of	its	data	normalization	and	annotation	tasks	to	
the	Processed	Document	Store,	it	publishes	a	list	of	the	consequent	state	changes,	and	each	Algorithm	backend	
subscribes	 to	 notifications	 of	 such	 state	 changes	 to	 create	 what	 is	 essentially	 a	 blackboard	 pattern	 [2],	
(pub*/sub*	in	the	figure).	Each	Algorithm	backend	then	triggers	any	required	new	training	jobs	via	the	Proxy,	
which	abstracts	away	task	scheduling	in	the	Model	Training	service	and	which	maintains	the	blackboard	with	
training	 job	 status	 for	 the	 Algorithm	 backends	 to	 monitor.	 Once	 any	 training	 job	 completes,	 the	 resulting	
trained	model	is	loaded	into	memory	by	the	Model	Server	and	made	available	for	use.	Finally,	the	user	is	able	to	
query	the	system	for	inferences	made	based	on	the	processed	data,	which	are	ensembled	as	described	above	
and	stored	to	the	Training	Database	to	be	retrieved	at	will.	

Using	this	architecture,	reliability	and	fault	tolerance	are	hoisted	into	the	system	design,	leaving	accuracy	to	
be	 the	 chief	 concern	 of	 the	 Algorithm	 backend	 being	 developed	 by	 the	 research	 team	 and	 allowing	 the	
engineering	team	to	 iterate	on	the	usual	engineering	tasks.	The	responsibilities	for	 individual	components	of	
the	system	were	discussed	among	and	decided	upon	by	both	 teams	 to	avoid	missed	requirements	and	were	
then	recorded	in	ADRs.	

3.3 Summary	of	Results	
Throughout	 the	 development	 process,	 as	 the	 concerns	 common	 to	 each	 backend	 became	 clear,	 utilizing	 a	
microservice	architecture	allowed	the	engineering	team	to	iterate	on	the	overall	system	design	and	implement	
individual	 components	 to	 provide	 the	 desired	QAs,	 allowing	 sufficient	 time	 for	 the	 science	 produced	 by	 the	
research	effort	to	evolve.	For	example,	one	backend	was	able	to	provide	minimal	service	quality	while	 initial	
nontrivial	scaling	and	performance	issues	in	the	other	backend	were	characterized	and	resolved.		

This	 architecture	was	 flexible	 enough	 to	 be	 adapted	 to	 the	 new	business	 requirements	 that	were	 added	
over	 time	 and	 allowed	 both	 teams	 to	 work	 with	 minimal	 communication	 and	 management	 overhead.	 In	
particular,	this	development	process	allowed	both	teams	to	work	towards	their	own	incentives	in	such	a	way	
that	the	final	product	had	a	cohesive	design	and	had	all	desired	properties.		

Following	this	strategy,	the	teams	quickly	adapted	well	to	this	development	process.	However,	a	drawback	
to	that	process	became	apparent	upon	the	discovery	that,	after	two	sprints	with	less	communication	than	there	
should	 have	 been,	 both	 teams	 had	 identified	 and	 approached	 the	 same	 problem	 with	 mutually	 exclusive	
solutions.	These	 solutions	had	 to	be	 reconciled,	delaying	development.	Furthermore,	 towards	 the	end	of	 the	
project	 there	was	 a	 significant	 barrier	 for	 one	 team	 helping	 another	 complete	 or	 debug	 an	 implementation	
because	 of	 a	 lack	 of	 familiarity	 with	 each	 other’s	 codebases.	 Nevertheless,	 and	 despite	 significant	 new	
requirements	 having	 been	 introduced	 midway	 through	 the	 project,	 the	 overall	 system	 met	 its	 functional	
specifications	within	a	few	weeks	of	the	aggressive	original	deadline.	

4. CONCLUSIONS	

We	found	that	choosing	a	microservice	architecture	can	facilitate	a	development	process	for	teams	in	different	
organizations	and	with	different	incentives	to	be	able	to	do	long-term	work	in	a	decoupled	manner	and	having	
significantly	 reduced	 communication	 and	management	 overhead.	The	overall	 process	 could	be	 improved	by	
increasing	 cross-team	 code	 reviews,	 having	 some	minimal	 formal	 project	management	 role,	 and/or	making	
more	frequent	use	of	architectural	decision	records	in	order	to	avoid	loss	of	cross-team	synchronization.	

We	 have	 examined	 here	 a	 method	 for	 scaling	 agile	 development	 across	 loosely	 couple	 engineering	 and	
research	 teams	 by	 hoisting	 specific	 quality	 attributes	 into	 system	 design	 using	 a	microservice	 architecture.	
Although	this	is	one	specific	application	of	this	approach,	we	believe	that	the	overall	framework	described	here	
is	generally	applicable	to	scaling	agile	development	across	teams	with	different	incentive	structures.	

5. ACKNOWLEDGEMENTS	

We	would	like	to	thank,	in	no	particular	order,	Gabe	Hart,	Mark	Tyneway,	Manjari	Akella,	Alfio	Gliozzo,	Nicolas	
Fauceglia,	Gaetano	Rossiello,	Michael	Glass,	and	Sarthak	Dash	for	their	passion	and	hard	work	throughout	the	
project	 described	 here.	We	would	 also	 like	 to	 thank	 Tim	 O’Connor	 for	 his	 critical	 feedback	 throughout	 the	
writing	process.	



Scaling	agile	development	across	loosely	coupled	teams	using	microservice	architecture:	Page	-	4	
 

	

REFERENCES		
[1] Chen,	 Lianping	 (2013).	 "Characterizing	 Architecturally	 Significant	 Requirements".	 IEEE	 Software.	 30	 (2):	 38–45.	

doi:10.1109/MS.2012.174.	
[2] Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides	(1995).	"Design	Patterns:	Elements	of	Reusable	Object-Oriented	

Software".	Addison-Wesley	Longman	Publishing	Co.,	Inc.,	Boston,	MA,	USA.	
[3] Fairbanks,	George	(2014).	"Architectural	Hoisting.	IEEE	Software	31	(4):	12-15.		doi:10.1109/MS.2014.82	
[4] Rokach,	L.	Artif	Intell	Rev	(2010).	"Ensemble-based	classifiers".	33:	1-39.	doi:10.1007/s10462-009-9124-7	
[5] Scott	W.	 Ambler	 and	 Mark	 Lines.	 2012.	 Disciplined	 Agile	 Delivery:	 A	 Practitioner's	 Guide	 to	 Agile	 Software	 Delivery	 in	 the	

Enterprise	(1st	ed.).	IBM	Press.	
[6] Tyree,	 J.	 and	 Akerman,	 A.	 (2005).	 "Architecture	 decisions:	 Demystifying	 architecture."	 IEEE	 software.	 22	 (2):	 19-27.	

doi:10.1109/MS.2005.27	


