

	
Anastas	Stoyanovsky:	astoyan@us.ibm.com	
William	Chaparro:	wchaparr@us.ibm.com	
Copyright	2019	is	held	by	the	authors.

Accelerating	Organizational	Growth	with	Inspiration	from	
Parliamentary	Procedure	
ANASTAS	STOYANOVSKY,	IBM	Watson	
WILLIAM	CHAPARRO,	IBM	Watson	

Transitioning	 a	 growing	 development	 team	 into	 smaller,	 cross-functional	 sub-teams	 is	 challenging,	 particularly	 until	 a	 collaborative	
decision-making	process	for	shared	concerns	is	agreed	upon.	Within	the	framework	of	XP,	we	hypothesize	that	a	core	part	of	this	challenge	
comes	from	a	fracturing	of	shared	understanding	as	those	sub-teams	form	and	storm.	In	order	to	navigate	this	process	and	re-establish	
that	shared	understanding,	we	take	inspiration	from	Robert's	Rules	of	Order,	Newly	Revised	(RONR),	which	is	the	most	widely	used	manual	
of	parliamentary	procedure	in	the	United	States.		

Some	of	the	specific	inspirations	we	drew	from	RONR	were	to	establish	a	formal	charter	and	bylaws,	treating	our	wider	development	team	
as	a	formal	organization;	we	reimagined	and	redefined	these	and	other	formalities	in	terms	of	agile	ceremonies	and	XP	practices.	Herein,	
we	describe	the	integrated	framework	we	developed	and	will	share	our	experience	implementing	it	at	IBM	Watson	to	foresee	and	improve	
organizational	scaling	efficiency,	accelerating	the	onboarding	process	and	allowing	our	organization	to	grow	more	efficiently.		

1. INTRODUCTION	

Organizational	efficiency	and	scaling	are	universal	challenges,	due	in	part	to	communication	costs	that	increase	
as	up	to	the	square	of	team	size	(Brooks,	1995).	In	this	experience	report	we	will	focus	on	our	approach	to	the	
specific	case	of	scaling	a	growing	team	of	software	engineers	to	multiple	cross-functional	teams.	After	our	team	
had	 grown	 to	 14	 engineers,	 we	 split	 it	 into	 three	 smaller,	 cross-functional	 teams.	 We	 immediately	 began	
observing	inefficient	communication	of	significant	design	and	architecture	decisions	after	they	were	made,	and	
sometimes	deadlock	in	even	reaching	agreement	on	such	decisions.	We	hypothesized	that,	in	the	terminology	
of	eXtreme	Programming	(XP)	(Beck,	1999),	the	shared	understanding	of	the	initial	team	had	been	eliminated	
by	 the	 team	 split,	 and	 that	 the	 observed	 problems	 would	 worsen	 after	 another	 significant	 increase	 in	
headcount.	 To	 test	 this	 hypothesis,	we	 looked	 for	 an	 approach	 to	 re-establish,	maintain,	 and	 spread	 shared	
understanding,	 and	 then	 tested	 this	 approach	 during	 another	 onboarding	 event	 after	 which	 head	 count	
increased	by	50%.	

Our	approach	was	directly	inspired	by	Robert’s	Rules	of	Order,	Newly	Revised	(RONR),	which	is	a	handbook	
on	 formal	 rules	 for	 a	 wide	 range	 of	 types	 of	 organizations	 that	 was	 first	 published	 in	 1876	 and	 has	 been	
continuously	 revised	 since	 (Robert	 III,	 Honemannn,	 Balch,	 Seabold,	 &	 Gerber,	 2011).	 Based	 on	 parallels	
between	common	agile/XP	practices	and	rules	described	 in	RONR,	we	constructed	an	 integrated	 framework	
that	draws	on	empirically	effective	 forms	of	 self-organization	described	 in	both	 these	 sources.	We	defined	a	
team	 charter	 defining	 the	 team’s	mission,	 in	 analogy	 to	 a	 formal	 organization’s	 charter,	 and	 codified	 tribal	
knowledge	of	 the	 team’s	development	process,	 in	 analogy	 to	 a	 formal	 organization’s	bylaws.	We	 focused	on	
addressing	 three	 specific	 areas:	 (1)	 efficiency	 of	 onboarding,	 (extending	 shared	 understanding	 to	 new	 team	
members);	(2)	establishing	efficient	communication,	(maintaining	shared	understanding),	and	(3)	establishing	
efficient	decision	making,	 (efficiently	creating	new	shared	understanding).	We	report	moderate	success	with	
respect	to	(1)	and	(2)	and	mixed	results	with	respect	to	(3).	

2. RELATED	WORK	

There	 has	 been	much	written	 about	 scaling	 agile	 development	 since	 soon	 after	 the	 publication	 of	 the	 Agile	
Manifesto	(The	Agile	Manifesto,	n.d.)	(Eckstein,	2004),	including	named	frameworks	such	as	AUP	(Ambler	S.	 ,	
2019),	 DAD	 (Ambler	 &	 Lines,	 2012),	 and	 SAFe	 (Leffingwell,	 Knaster,	 Oren,	 &	 Jemilo,	 2018),	 which	 try	 to	
address	organization	past	the	single	team	level.	These	and	others	tend	to	build	on	the	Agile	Manifesto	and/or	
XP.	Another	approach	to	scaling	agile	organizations	has	been	given	in	what	is	often	referred	to	as	"the	Spotify	

Accelerating	Organization	Growth	with	Inspiration	from	Parliamentary	Procedure:	Page	-	2	

model"	 (Kniberg,	 2014).	 An	 interesting	 example	 of	 large-scale	 self-organization	 of	 teams	working	 on	 open-
source	software	is	the	Kubernetes	governance	model	(Kubernetes	Governance	Model,	2019).	

3. BACKGROUND	

IBM	Watson	Discovery	Service	is	a	platform	that	provides	information	retrieval	capabilities	as	a	cloud	service	
and	 is	 implemented	 in	 a	 microservice	 architecture.	 It	 is	 staffed	 by	 ~5	 largely	 autonomous	 teams	 that	
coordinate	only	on	high	 level	business	goals	and	each	of	which	has	essentially	complete	ownership	over	 the	
entire	 software	 development	 lifecycle	 for	 the	microservices	 they	 own.	 The	 authors'	 team	 is	 responsible	 for	
runtime	information	retrieval	components,	as	well	as	the	machine	learning	model	training	and	serving	lifecycle	
underlying	the	involved	artificial	intelligence	capabilities.		

The	 initial	 release	of	 this	 set	of	 services	was	 implemented	by	a	 team	of	6-8	engineers.	After	 that	 release,	
another	 team	 of	 approximately	 the	 same	 size	 joined,	 as	 well	 as	 its	 development	 manager.	 At	 first,	 the	
development	team	was	not	structured	cross-functionally,	in	that	an	engineering	team	would	consist	entirely	of	
engineers	 reporting	 to	 the	 same	manager.	After	 approximately	1.5	 years	 in	production,	 these	 two	 reporting	
chain	 based	 teams,	 comprised	 of	 14	 people	 total	 at	 that	 time,	 were	 reorganized	 into	 three	 smaller	 cross-
functional	teams	whose	structure	was	not	related	to	reporting	chains.	Of	these	14	engineers,	only	five	had	been	
on	the	team	throughout	the	entire	product’s	development;	these	five,	together,	had	complete	knowledge	of	the	
entire	product,	but	were	distributed	amongst	these	three	new	teams,	at	least	one	per	team.		

Within	 days	 of	 separating	 into	 cross-functional	 teams	 that	 each	 consisted	 largely	 of	 junior	 members,	
organizational	 problems	 surfaced.	 There	 was	 no	 clear	 decision-making	 process:	 whereas	 architectural	
decisions	had	previously	reached	consensus	and	been	recorded	with	little	controversy,	there	was	no	longer	a	
clear	path	 towards	consensus	 in	cases	of	disagreement.	This	 is	exemplified	by	a	 technical	proposal	made	by	
one	team	regarding	a	decision	affecting	all	teams	and	that	received	56	comments,	most	of	the	last	30	being	an	
argument	between	two	people	from	different	teams.	This	discussion	reached	a	stalemate	for	weeks.1	

Each	individual	team	had	incomplete	familiarity	with	the	entirety	of	the	architecture;	a	recurring	problem	
was	one	team	designing	new	functionality	without	being	aware	of	its	implications	on	components	owned	by	a	
different	team,	leading	to	slow	design	processes	and/or	design	flaws.	It	became	clear	that	alignment	between	
teams	could	not	be	relied	upon	to	happen	naturally	and	that	it	was	necessary	to	implement	some	remedy	in	a	
timely	manner.	At	the	same	time,	a	third	development	manager	and	his	direct	reports	were	preparing	to	join	
the	 growing	 organization	 as	well;	 adding	 one	 or	 two	more	members	may	 not	 have	 had	 a	 large	 impact,	 but	
increasing	head	count	by	another	50%,	before	having	solved	these	 fundamental	problems,	would	 likely	have	
caused	significant	disarray	in	the	organization	and	significantly	delayed	its	development	roadmap.	

4. AIMS	

Under	the	abstract	hypothesis	that	the	root	cause	of	our	observed	organizational	problems	was	a	fracturing	of	
shared	understanding,	we	chose	three	specific	short-term	Aims	with	respect	to	which	we	would	be	better	able	
to	directly	measure	success:	

Aim	1. Minimize	onboarding	time	for	new	team	members.	
Aim	2. Ensure	 that	 understanding	 of	 our	 development	 process	 exists	 amongst	 all	 current	 team	

members	 and	 propagates	 efficiently	 to	 new	 ones,	 especially	 that	 understanding	 which	 had	
previously	existed	as	tribal	knowledge.	

Aim	3. Ensure	 that	 significant	 design,	 implementation,	 and	 architectural	 decisions	 are	 informed,	
reached	 through	 consensus	 with	 the	 necessary	 stakeholders,	 and	 have	 a	 method	 for	
dissemination	once	made.	

To	work	towards	these	Aims,	we	drew	from	RONR	in	order	to	extract	sets	of	concepts	and	principles	that	
are	 empirically	 effective	 for	 facilitating	 self-organization	 of	 large	 groups	 and	 then	 integrated	 those	 with	
agile/XP	practices.		

1 The stalemate can be best illustrated with a comment of “It doesn't sound like there is a solution that we will agree on, so I'd like to move this to
some sort of internal arbitration process that can impose a solution without requiring a consensus,” being met with “This is the internal arbitrage
process, right here.”
2 RONR discusses corporate constitutions and bylaws: “In general, the constitution or the bylaws - or both - of a society are the documents that

Accelerating	Organization	Growth	with	Inspiration	from	Parliamentary	Procedure:	Page	-	3	

5. MOTIVATION	

	While	discussing	how	to	deal	with	emergent	organizational	inefficiencies	and	prevent	further	ones,	we	noticed	
a	number	of	parallels	between	XP/agile	practices	and	RONR.	The	initial	motivating	observation	was	that	RONR	
specifies	 that	 “the	bylaws	of	an	organized	 local	 society	usually	provide	 that	 it	 shall	hold	 regular	meetings	at	
stated	intervals...	and	also	usually	provide	a	procedure	for	calling	special	meetings	as	needed”	at	which	those	
bylaws	can	be	modified.2	Historically,	our	 team	had	used	agile	retrospectives	as	an	opportunity	 to	reflect	on	
and	 experiment	with	 our	 development	 processes;	 if	 one	 views	 the	 development	 process	 of	 a	 team	 as	 being	
analogous	to	an	organization’s	bylaws,	then	agile	retrospectives	would	correspond	to	those	periodic	meetings.	
A	fundamental	part	of	onboarding	new	team	members	would,	 in	this	terminology,	 involve	familiarizing	them	
with	those	bylaws.	This	prompted	us	to	look	for	more	analogies	with	the	structures	and	principles	described	in	
RONR.	

5.1 Robert’s	Rules	of	Order	
RONR	begins	by	defining	and	describing	several	different	types	of	deliberative	assembly:	mass	meetings,	local	
assemblies	of	an	organized	society,	 conventions,	 legislative	bodies,	and	boards.	Of	 these,	 the	convention	and	
the	legislative	body	were	not	relevant	to	our	case.	

• A	mass	meeting	 is	 “a	meeting	 of	 an	 unorganized	 group	 that	 is	 announced	 as	 open	 to	 everyone	 (or	
everyone	within	 a	 specified	 sector	 of	 the	 population)	 interested	 in	 a	 particular	 problem	 or	 purpose	
defined	by	the	meeting’s	sponsors,	that	is	called	with	a	view	to	appropriate	action	to	be	decided	on	and	
taken	by	the	meeting	body.”	

• A	 local	 assembly	 of	 an	 organized	 society	 is	 “the	 highest	 authority	 within	 such	 a	 society	 or	 branch	
(subject	only	 to	 the	provisions	of	 the	bylaws	or	other	basic	document	establishing	 the	organization),	
this	body	acts	for	the	total	membership	in	the	transaction	of	its	business.”	

• A	board	 is	“an	administrative,	managerial,	or	quasi-judicial	body	of	elected	or	appointed	persons	that	
differs	from	several	of	the	other	principal	types	of	deliberative	assembly	as	follows:	

o “boards	are	frequently	smaller	than	most	other	assemblies,	and	
o “while	 a	 board	 may	 or	 may	 not	 function	 autonomously,	 its	 operation	 is	 determined	 by	

responsibilities	and	powers	delegated	to	it	or	conferred	on	it	by	authority	outside	itself.”	

RONR	recounts	that	new	organizations	are	generally	established	at	a	mass	meeting.	It	goes	on	to	give	general	
principles	of	definition	 for	 formal	organizations,	suggesting,	at	a	minimum,	a	charter	and	a	set	of	bylaws;	an	
organization’s	charter	defines	the	organization’s	mission	and	cannot	be	changed,	while	its	bylaws	describe	its	
daily	functioning	and	can	only	be	changed	at	periodic	local	assemblies.		

6. IMPLEMENTATION	

In	order	to	work	toward	Aims	1-3	for	what	had	become	multiple	teams	and	whose	total	headcount	was	about	
to	increase	by	50%,	we	first	established	a	source	control	repository	in	which	to	encode	tribal	knowledge	of	our	
development	 practices.	 The	 first	 pieces	 of	 text	 committed	 to	 this	 repository	 were	 drafted	 collaboratively	
among	 the	more	 senior	 team	members,	 and	 that	 draft	was	 then	 brought	 to	 all	 23	members	 to	 finalize	 and	
endorse	during	what	roughly	corresponded	to	a	mass	meeting.	The	initial	commits	to	the	repository	added	a	
charter,	a	list	of	bylaws,	and	a	list	of	component	architects;	the	latter	is	described	in	Component	Architects	and	
Expertise	below.	

We	were	careful	to	not	attempt	to	overextend	analogies	with	what	is	described	in	RONR.	For	example,	the	
rules	 of	 order	 for	 conducting	 a	 deliberative	 assembly	 seemed	 like	 they	 would	 have	 leaned	 more	 towards	
“process	over	people”	for	the	size	of	our	team,	in	contradiction	with	the	“people	over	process”	value	given	in	
the	Agile	Manifesto.	Those	rules	of	order	 include	rigid	mechanisms	 for	bringing	motions	 to	order,	seconding	
motions,	 and	 numerous	 other	 details	 which	 we	 deemed	 overly	 constrictive	 for	 us	 at	 that	 time.3	 We	 did,	

2 RONR discusses corporate constitutions and bylaws: “In general, the constitution or the bylaws - or both - of a society are the documents that
contain its own basic rules relating principally to itself as an organization, rather than to the parliamentary procedure that it follows. In the ordinary
case, it is now the recommended practice that all of a society's rules of this kind be combined into a single instrument, usually called the bylaws....”
We opted to follow this recommended practice.
3 There are further, finer-grained formalities, such as agendas and meeting minutes, which are already common in some form and are used to
varying degrees to suit the working habits of the people within a particular organization. The concept of a call to order, for example, manifests

Accelerating	Organization	Growth	with	Inspiration	from	Parliamentary	Procedure:	Page	-	4	

however,	 identify	 some	 constructs	 that	 seemed	 potentially	 useful	 to	 codify	 were	 the	 organization	 to	 grow	
larger;	those	are	discussed	below	in	the	Possible	Extensions	section.		

6.1 Charter	
The	first	step	we	took	was	to	collaboratively	define	an	explicit	team	charter,	with	the	goal	of	keeping	it	to	one	
sentence.	Per	RONR,	a	formal	organization’s	charter	cannot	be	changed	for	organizations	that	exist	legally;	we	
felt	 that,	 in	 principle,	 the	 concept	 of	 a	 charter	 corresponds	 to	 an	 engineering	 team’s	 identity,	 purpose,	 and	
purview.	 Since	 these	 can	 change,	we	do	not	 expect	 to	 treat	 our	 charter	 as	 immutable,	 but	 rather	 as	 slow	 to	
change.		

Based	 on	 previous	 experience,	 effectively	 communicating	 the	 team’s	 general	 mission,	 scope,	 and	
responsibilities	 during	 onboarding	 of	 new	members	 would	 normally	 have	 been	 a	 half	 hour	 of	 improvised,	
unorganized	communication	of	tribal	knowledge,	followed	by	a	question	and	answer	session.	This	would	have	
added	 up	 to	 over	 one	work	 day’s	worth	 of	 time,	 totaled	 across	 23	 people	 in	 this	 case.	 Instead,	 after	 having	
taken	 time	 to	 craft	 a	 clear	 and	 concise	 charter4	 that	 had	 been	 endorsed	 by	 all	 previously	 existing	 team	
members,	we	were	able	to	establish	that	shared	understanding	with	a	one-way	message	that	was	delivered	in	
seconds.	This	was	a	small	but	significant	first	step	towards	Aims	1	and	2;	obviously,	minimizing	time	spent	in	
meetings	that	include	23	people	is	advantageous.	

6.2 Bylaws	
As	mentioned	above,	RONR	defines	the	bylaws	of	an	organization	as	“the	documents	that	contain	its	own	basic	
rules	relating	principally	to	itself	as	an	organization”	and	we	chose	to	define	our	bylaws	as	our	development	
and	support	practices	and	processes.	RONR	also	specifies	that	“the	bylaws	of	an	organized	local	society	usually	
provide	that	it	shall	hold	regular	meetings	at	stated	intervals”	at	which	its	bylaws	can	be	modified,	which,	again	
as	mentioned	above,	seemed	to	correspond	naturally	to	our	agile	retrospectives.	

The	 first	 draft	 of	 our	 bylaws	 was	 written	 collaboratively	 by	 the	 more	 senior	 team	 members	 and	 their	
development	manager,	and	was	finalized	during	an	hour-long	meeting	including	all	members	of	teams	in	our	
larger	 organization.	 An	 early	 decision	 to	make	was	 regarding	what	 level	 of	 detail	 to	 target	 for	 our	 bylaws;	
keeping	 in	 line	 with	 the	 Agile	 Manifesto	 value	 of	 "people	 over	 process,”	 we	 kept	 our	 bylaws	 concise	 and	
minimal,	and	we	tried	to	arrive	at	them	descriptively	rather	than	via	an	opinionated	mindset.	We	attempted	to	
encode	 methods	 for	 efficient	 decision	 making	 (see	 Component	 Architects	 and	 Expertise	 below)	 and	 for	 low	
overhead	of	communication	of	decisions	after	they	are	made	(details	given	below).	Finally,	we	were	careful	to	
avoid	restricting	team	autonomy	in	any	way	we	felt	not	strictly	necessary	for	achieving	the	above	goals.	Our	
bylaws	are	given	in	Appendix	I,	redacted	as	per	confidentiality	requirements.	

6.3 Component	Architects	and	Expertise	
We	 had	 previously	 found	 it	 beneficial	 to	 identify	 “component	 architects,”	 that	 is,	 one	 to	 two	 engineers	 per	
component	who	have	ownership	over	 its	design	and	evolution	 (Keeling,	Runde,	&	Gala,	2018).	 In	particular,	
lack	of	deliberate	 stewardship	of	a	 component	had	often	 led	 to	 indecision	during	new	 feature	design	and	 to	
architecture	violations	during	implementation.	We	identified	the	concept	of	officers	of	a	formal	organization,	as	
given	to	RONR,	as	an	analogy	to	this	concept.	

Our	 bylaws	 encoded	 that	 significant	 design,	 technical,	 and	 architectural	 decisions	 would	 be	 reached	 by	
consensus	 that	 includes	 both	 external	 stakeholders	 and	 component	 architects.	 In	 particular,	 significant	
architectural	 decisions	 would	 continue	 to	 be	 recorded	 in	 Architectural	 Decision	 Records	 (ADRs)	 (Nygard,	
2011),	which	had	already	been	an	established	practice	for	our	team	(Keeling	&	Runde,	2017).	Taken	together,	
these	 worked	 towards	 Aim	 3:	 we	 expected	 that	 requiring	 consensus	 among	 all	 stakeholders,	 who	 include	
component	 architects,	 would	 encourage	 informed	 decisions.	 Recording	 those	 decisions	 in	 ADRs	 provided	 a	
straightforward	way	to	disseminate	that	information	with	low	overhead.	

Alongside	the	“Component	Architects”	documentation,	we	included	an	“Expertise”	section	whose	goal	was	
to	 serve	 as	 a	 reference	 for	 junior	 engineers	 to	use	 to	 solicit	 advice	on	 specific	 technical	 topics	 (“Distributed	
Systems”,	“Machine	Learning”,	etc.).	At	the	time	of	these	sections’	writing,	people	from	the	original	team	were	

casually when a meeting begins with the statement, “it’s time to get started.” While perhaps uninteresting on their own, we mention these
correspondences as further evidence that the approaches in RONR give name and definition to natural ways that humans effectively self-organize.
4 While we cannot share our exact charter due to company policy of revealing information on internal structure, its sentence structure is, “we
implement, ship, and maintain functionality of type X for product Y that provides significant customer value.” We were surprised at the amount of
discussion required to arrive at a wording of our charter that satisfied all existing team members.

Accelerating	Organization	Growth	with	Inspiration	from	Parliamentary	Procedure:	Page	-	5	

included;	 unfortunately,	 new	 team	 members	 did	 not	 update	 the	 “Expertise”	 section	 to	 include	 themselves,	
despite	repeated	requests	to	do	so.		

7. EXTENSIONS	

The	practices	 and	values	described	 in	XP	 are	 sometimes	 accompanied	by	 a	description	of	 common	 roles	 on	
software	development	teams.	These	roles	-	such	as	“programmer”,	“tester”,	and	“coach”	-	are	descriptive	in	that	
they	 are	 observations	 of	 the	 types	 of	 roles	 that	 people	 on	 successful	 programming	 teams	 tend	 to	 naturally	
assume:	“The	ones	you	see	today	are	there	because	they	worked	and	the	other	ones	didn’t.”	(Beck,	1999).	Since	
RONR	 is	 descriptive	 of	 structures	 within	 and	 principles	 of	 successful	 organizations,	 we	 looked	 for	 further	
analogies	between	XP/agile	practices	and	RONR.		

7.1 Temporary	and	Permanent	Committees	
Temporary	 committees	 are	 defined	 in	RONR	 as	 small,	 autonomous	 groups	 that	 form	 in	 order	 to	 establish	 a	
particular	task	or	carry	out	a	particular	investigation.	A	similar	idea	already	exists	under	the	name	“tiger	team"	
(Dempsey,	Davis,	Crossfield,	&	Williams,	1964),	illustrating	another	convergence	between	concepts	described	
in	RONR	and	existing	self-organizational	practices.		

One	example	of	a	way	that	this	concept	might	manifest	 is	 the	establishment	of	a	temporary	committee	of	
people	with	architect	roles	 in	order	to	design	a	new	system.	 Interestingly,	 this	bears	similarity	to	the	“guild”	
structure	 in	 the	 Spotify	 model	 (Kniberg,	 2014).	 We	 speculate	 that	 creating	 a	 “guild”	 type	 construct	 is	 an	
unnecessary	degree	of	formal	structure	until	an	organization	grows	past	a	certain	size	which	ours	has	not	yet	
reached,	and	so	we	have	not	explored	this.	

After	 implementing	 the	 approach	 we	 describe	 in	 this	 report,	 a	 permanent	 committee	 naturally	 formed	
when	a	team	member	organically	proposed	a	permanent	“tactical	squad”	whose	team	members	would	rotate	
and	 whose	 responsibility	 would	 be	 to	 maximize	 support	 quality.	 We	 agreed	 to	 adopt	 that	 construct	 at	 an	
emergency	team-wide	meeting	that	was	called	to	address	specific	support	issues,	after	which	we	amended	our	
bylaws	accordingly.	We	note	that	this	is	another	case	of	self-organization	which	emerged	in	a	form	described	in	
RONR.	

7.2 Board	
The	drafting	of	a	charter	and	bylaws	was	carried	out	collaboratively	by	a	group	of	more	senior	team	members.	
During	that	time	period,	it	might	be	argued	that	this	group	functioned	as	a	board,	notwithstanding	that	the	goal	
of	that	team	was	to	make	a	board-type	structure	unnecessary.	As	the	organization	grows	further,	it	is	possible	
that	 it	 will	 become	 necessary	 to	 establish	 a	 formal	 board;	we	 do	 not	 speculate	 under	what	 conditions	 that	
would	be	the	case	for	an	engineering	organization	contained	within	a	larger	corporate	structure.	

8. RESULTS	

We	sent	an	anonymous	survey	to	20	organizational	members	(including	engineers	and	development	managers,	
but	excluding	ourselves)	asking	their	assessment	of	whether	our	approach	helped	them:	

	
1. effectively	onboard,	
2. understand	how	the	organization	operates,	and	
3. understand	how	to	effectively	reach	informed	decisions	that	impact	others.	

	
We	 chose	 question	 types	 1,	 2,	 and	 3	 to	 be	 in	 direct	 correspondence	 with	 Aims	 1,	 2,	 and	 3.	 The	 survey	

population	was	composed	of	two	groups.	Our	team	was	composed	both	of	team	members	who	were	onboarded	
using	our	experimental	 approach	 (Group	A)	and	of	 team	members	who	had	previously	been	onboarded	but	
were	 present	 for	 the	 onboarding	 meeting	 in	 which	 we	 presented	 the	 framework	 described	 here	 to	 new	
members	(Group	B).	

For	 Group	 A,	 we	 asked	 variant	 A	 of	 question	 types	 1-3	 (Questions	 1A	 -	 3A,	 respectively)	 asking	 how	
effective	 they	 think	our	approach	was;	 for	Group	B,	we	asked	variant	B	of	questions	1-3	(Questions	1B	-	3B,	
respectively),	asking	them	to	assess	how	effective	they	think	our	approach	would	have	been	for	them	during	
their	previous	onboarding.	
 	

Accelerating	Organization	Growth	with	Inspiration	from	Parliamentary	Procedure:	Page	-	6	

	

8.1 Aim	1	
Our	first	Aim	was	to	“minimize	onboarding	time	for	new	team	members.”	

Question	1A:	“Was	this	an	effective	way	for	you	to	onboard?”	
Question	1B:	“Do	you	think	this	would	have	helped	you	onboard?”	

	
	 1	(Strongly	

Disagree)	
2	(Somewhat	
Disagree)	

3	(Neutral)	 4	(Somewhat	
Agree)	

5	(Strongly	
Agree)	

Mean	

Question	1A	 0	 0	 3	 4	 0	 3.6	
Question	1B	 0	 1	 2	 5	 2	 3.8	

8.2 Aim	2	
Our	 second	 Aim	was	 to	 “ensure	 that	 understanding	 of	 our	 development	 process	 exists	 amongst	 all	 current	
team	members	and	propagates	efficiently	to	new	ones,	especially	that	which	existed	as	tribal	knowledge.”	

Question	2A:	“Did	it	help	you	understand	how	the	team	operates?”	
Question	2B:	“Do	you	think	this	would	have	helped	you	understand	how	the	team	operates?”	

	
	 1	(Strongly	

Disagree)	
2	(Somewhat	
Disagree)	

3	(Neutral)	 4	(Somewhat	
Agree)	

5	(Strongly	
Agree)	

Mean		

Question	2A	 0	 1	 1	 1	 2	 3.8	
Question	2B	 0	 0	 2	 6	 2	 4.0	

8.3 Aim	3	
Our	third	Aim	was	to	“ensure	that	significant	design,	implementation,	and	architectural	decisions	are	informed,	
reached	 through	 consensus	 with	 the	 necessary	 stakeholders,	 and	 have	 a	 method	 for	 dissemination	 once	
made.”		

Question	3A:	“Did	it	help	you	understand	how	to	effectively	reach	informed	decisions	that	impact	others?”	
Question	 3B:	 “Do	 you	 think	 this	 would	 have	 helped	 you	 know	 how	 to	 arrive	 at	 informed	 decisions	 that	
impact	others?”	

	
	 1	(Strongly	

Disagree)	
2	(Somewhat	
Disagree)	

3	(Neutral)	 4	(Somewhat	
Agree)	

5	(Strongly	
Agree)	

Mean	

Question	3A	 0	 2	 1	 4	 0	 3.3	
Question	3B	 0	 0	 3	 6	 1	 3.8	

8.4 Other	Survey	Results	
We	 asked	 all	 survey	 participants,	 “If	 you	 have	 been	 onboarded	 to	 another	 team	 previously,	 how	 does	 this	
onboarding	compare?”,	asking	them	to	respond	on	a	scale	of	1	(“Much	Worse”)	to	5	(“Much	Better”).	
	

	 1	(Much	
Worse)	

2	(Worse)	 3	(About	the	
Same)	

4	(Better)	 5	(Much	
Better)	

Mean	

Responses	 1	 0	 0	 1	 2	 3.8	

8.5 Qualitative	Feedback	
We	included	one	open-ended	question:	“What	other	aspects	of	the	onboarding	process	could	be	improved?	Do	
you	have	any	further	feedback	or	considerations?”	The	relevant	responses	are	reproduced	in	Appendix	II,	with	
redaction	 of	 our	 internal	 team	name,	 of	 references	 to	 specific	 product	 features,	 and	 comments	 that	 are	 not	
directly	relevant.	

9. DISCUSSION	

The	 most	 commonly	 mentioned	 issue	 in	 feedback	 to	 our	 open-ended	 question	 regarding	 onboarding	
experiences	 was	 that	 the	 technical	 onboarding	 documentation	 was	 out	 of	 date,	 as	 was	 the	 breakdown	 of	
domain	expertise	by	person.	The	remedy	to	the	former	is	obvious.	With	regard	to	the	 latter,	we	noted	in	the	

Accelerating	Organization	Growth	with	Inspiration	from	Parliamentary	Procedure:	Page	-	7	

Component	Architects	and	Expertise	section	above	that	we	asked	the	new	team	members	to	add	themselves	to	
the	 listings	 but	 that	 they	 did	 not	 do	 so.	 Perhaps	 new	 team	members	 did	 not	 feel	 comfortable	 openly	 self-
assessing	 and	 declaring	 their	 own	 expertise.	 We	 have	 since	 removed	 the	 “Expertise”	 section	 from	 our	
documentation.	

The	mean	survey	results	are	positive	for	Aims	1-3,	though	to	varying	degrees;	in	particular,	according	to	the	
responses	we	received,	Aim	3	regarding	decision	making	seems	to	have	not	been	well	achieved.	It	is	possible	
that	the	failure	of	the	“Expertise”	section	led	to	a	net	negative	effect	towards	Aim	3,	especially	considering	the	
open-ended	feedback	mentioned	above.	Survey	results	indicate	success	with	respect	to	Aims	1	and	2.	

In	response	to	the	survey	question,	"If	you	have	been	onboarded	to	another	team	previously,	how	does	this	
onboarding	compare?"	there	was	one	vote	for	"Much	worse".	Since	the	survey	was	anonymous,	we	could	not	
follow	up	privately	to	understand	that	response;	we	chose	not	to	extend	an	open	invitation	for	that	respondee	
to	come	forth	out	of	a	concern	that	doing	so	would	discourage	team	members	 from	responding	genuinely	to	
surveys	in	the	future.	We	conclude	that	our	approaches	to	Aims	1	and	2	served	most	team	members	well,	but	
not	all,	and	that,	in	particular,	our	approach	for	Aim	3	needs	improvement.	

10. CONCLUSION	

After	splitting	a	growing	development	team	into	smaller,	cross-functional	teams	that	were	each	led	by	one	or	
two	 of	 the	 previously	 existing	 senior	 team	 members,	 we	 observed	 a	 breakdown	 in	 communication	 and	
decision-making	processes.	We	hypothesized	that	this	was	due	to	a	fracturing	of	the	shared	understanding	that	
existed	 on	 the	 original	 team.	Due	 to	 an	 upcoming	 50%	 increase	 in	 headcount	 that	would	 likely	worsen	 the	
situation,	 we	 tested	 our	 hypothesis,	 using	 inspiration	 from	 organizational	 principles	 given	 in	 RONR,	 by	
composing	an	organization	 charter	and	bylaws,	 adopting	 those	across	all	 teams,	 and	using	 them	 to	onboard	
new	team	members.	We	supplemented	this	with	“Components	Architects”	and	“Expertise”	sections,	whose	goal	
was	to	identify	architects	of	specific	codebases	and	experts	in	specific	technical	areas,	respectively.	

We	surveyed	the	team	with	regard	to	whether	they	felt	the	approach	helped	them	-	or,	if	they	had	already	
been	 onboarded	 would	 have	 helped	 them	 -	 (1)	 effectively	 onboard,	 (2)	 understand	 how	 the	 organization	
operates,	and	(3)	understand	how	to	reach	informed	decisions	and	communicate	them	to	others.	The	survey	
showed	positive	overall	responses	for	(1)	and	(2),	but	only	slightly	positive	overall	responses	for	(3)	and	with	
multiple	responses	in	the	negative.	We	used	these	results	as	proxy	metrics	for	whether	our	approach	was	able	
to	re-establish,	spread,	and	maintain	shared	understanding	of	our	development	process.	Based	on	the	results,	it	
seems	 that	 our	 approach	 was	 generally	 effective	 but	 can	 be	 improved,	 especially	 with	 respect	 to	 (3).	 In	
particular,	 the	“Expertise”	documentation	seemed	to	have	served	as	a	net	negative,	perhaps	due	to	a	general	
hesitation	in	new	team	members	towards	self-declaration	of	specific	expertise.	

Finally,	 based	 on	 our	 chosen	 proxy	metrics,	 we	 conclude	 that	 the	maintenance	 of	 shared	 understanding	
while	scaling	one	engineering	team	to	several	smaller	teams	is	essential	to	avoid	accumulating	organizational	
inefficiencies	during	that	process.	Furthermore,	we	conclude	that	the	approaches	to	organizational	definition	
and	 governance	 suggested	 in	 RONR	 do	 significantly	 and	 effectively	 converge	 with	 agile/XP	 practices;	 in	
particular,	deriving	an	integrated	framework	based	on	this	convergence	both	is	effective	at	the	organizational	
scale	we	describe	and	is	a	promising	perspective	to	use	when	growing	to	larger	organizational	scales.	

11. ACKNOWLEDGEMENTS	

We	would	like	to	thank	our	team	at	IBM	Watson	for	their	open	feedback	on	our	approach	described	here	and	
for	their	general	willingness	to	experiment	with	development	processes.	We	would	like	to	thank	Jutta	Eckstein,	
our	 shepherd	 for	 this	 experience	 report,	 for	 her	 thoughtful,	 insightful,	 and	 patient	 feedback	 during	 the	
composition	of	this	experience	report.	

REFERENCES		
Ambler, S. (2019, April 13). The Agile Unified Process. Retrieved from http://www.ambysoft.com/unifiedprocess/agileUP.html
Ambler, S. W., & Lines, M. (2012). Disciplined Agile Delivery: A Practitioner's Guide to Agile Software Delivery in the Enterprise . IBM Press.
Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison-Wesley Professional.
Brooks, J. F. (1995). The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley Professional.
Dempsey, J., Davis, M., Crossfield, A., & Williams, W. (1964). Program Management in Design and Development. SAE Technical Papers.
Eckstein, J. (2004). Agile Software Development in the Large: Diving Into the Deep. Dorset House.
Keeling, M., & Runde, J. (2017). Architecture Decision Records in Action . SATURN.
Keeling, M., Runde, J., & Gala, C. J. (2018). Architectural Hoisting: Or How I Learned to Stop Writing Breaking Code and Love the Architecture.

SATURN.

Accelerating	Organization	Growth	with	Inspiration	from	Parliamentary	Procedure:	Page	-	8	

Kniberg, H. (2014, 03 27). Spotify engineering culture (part 1). Retrieved from https://labs.spotify.com/2014/03/27/spotify-engineering-culture-
part-1/

Kruchten , P. (2000). The Rational Unified Process: An Introduction, Second Edition. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.
Kubernetes Governance Model. (2019, 04 13). Retrieved from https://github.com/kubernetes/community/blob/master/governance.md
Leffingwell, D., Knaster, R., Oren, I., & Jemilo, D. (2018). SAFe reference guide: Scaled agile framework for lean enterprises. Boulder, CO:

Addison-Wesley Professional.
Nygard, M. (2011, 11 15). Documenting Architecture Decisions. Retrieved from http://thinkrelevance.com/blog/2011/11/15/documenting-

architecture-decisions
Robert III, H. M., Honemannn, D. H., Balch, T. J., Seabold, D. E., & Gerber, S. (2011). Robert's Rules of Order Newly Revised. PublicAffairs.
The Agile Manifesto. (n.d.). Retrieved from https://agilemanifesto.org/

Appendix I: Bylaws	

Article	I. Operational	Principles	
1. All	significant	architectural	decisions	will	be	recorded	as	an	architectural	decision	record	(ADR).	
2. All	code	committed	to	any…	organization	repository	master	branch	will	have	either	gone	through	code	review	

and	been	approved	or	have	been	written	during	a	mobbing	session.	
3. All	 significant	design	and/or	architecture	decisions	are	arrived	at	 through	a	consensus	 that	 includes	domain	

experts	and/or	component	architects.	
4. All	members	who	routinely	contribute	production	code	support	that	code	by	going	on	call.	
5. All	support	work	will	follow	[our]	support	policy;	see	Article	III.	

Article	II. Best	Practices	
1. All	functionality	will	be	covered	by	automated	verification	tests	that	run	after	every	deployment.	Exceptions	to	

this	rule	are	either	arrived	at	through	group	consensus	or	are	clearly	marked	as	technical	debt.”	
2. All	significant	new	functionality	will	be	performance	and/or	load	tested	under	conditions	that	mimic	customer	

usage	as	realistically	as	possible	before	being	released	for	general	availability	(GA).	
3. All	 deployable	 components	 will	 be	 characterized	 in	 their	 READMEs	 as	 targeting	 specific	 quality	 attributes	

(QAs).	
4. The	state	of	deployed…	services	will	be	defined	in	code	("code	as	configuration").	
5. Cases	that	do	not	follow	the	above	are	marked	as	technical	debt.	
6. All	significant	new	feature	development	will	go	through	example	mapping	before	implementation	work	begins.	

Article	III. Support	Process	
Not	reproduced	for	reasons	of	confidentiality.	

Article	IV. Tactical	Squad	
Not	reproduced	for	reasons	of	confidentiality.	

Article	V. Altering	Bylaws	
1. Any	 part	 of	 these	 practices,	 principles,	 and	 processes	 are	 subject	 to	 modification	 at	 a	 team	 retrospective	

consisting	of	at	least	half	the	team,	at	a	team	meeting	called	to	address	a	team-wide	problem,	and	at	emergency	
meetings.	

APPENDIX	II:	OPEN-ENDED	SURVEY	RESPONSES	

1. 	“The	 documents	 within	 the	 repo	 were	 helpful	 to	 point	 to	 during	 activities	 while	 new	 members	 were	
coming	 up	 to	 speed.	 But	 the…	 repo	 itself	 didn’t	 help	 us	 come	 up	 with	 a	 process	 for	 doing	 the	 actual	
onboarding….”	

2. “There	wasn’t	really	a	formal	onboarding	process	for	me.	It	was	pretty	unofficial,	but	worked	out	fine.”	
3. “[The	repo]	is	never	reviewed	and	can	easily	go	out	of	date.	A	fraction	of	the	team	is	listed	on	the	expertise	

page	 and	 that	 is	 not	 due	 to	 lack	 of	 expertise,	 but	 as	 result	 of	 not	 reviewing	 the	 contents	 as	 a	 team	
occasionally.	It	does	not	help	at	all	for	technical	setup,	information	about	the	[team-owned]	components,	
or	where	to	find	the	repos.”	

4. “Some	Suggestions	for	Improving:	-	Better	[team]	education	-	unified	content	that	actively	gets	updated	
as	changes	happen	-	Need	to	do	a	better	job	at	keeping	the	docs/READMEs	up	to	date….”	

